

CompAQS/Cityscan - the Air Quality Spectrometer

Roland Leigh

Rosemarie Graves, Jasdeep Anand, James Lawrence, Chris Whyte, Paul Monks Earth Observation Science Group, University of Leicester. Mike Cutter, Dan Lobb, Mark Chang Surrey Satellite Technology Ltd

CompA

Motivations

•Clean air is considered to be a basic requirement of human health (WHO)

•Reduces life expectancy in UK on average by 7-8 months

•£15bn p.a. cost to UK

•Requirement for global solution management.

NO₂ concentration, 2007

Lowest

Melbourne

Highest

University of Urban-scale air quality Leicester from orbit

The CompAQS mission concept

CompAQS Heritage

 In 1994 Dan Lobb (SSTL) proposed a spectrometer optimised for DOAS retrievals.

Theory of concentric designs for grating spectrometers

D. R. Lobb

A concentric optical design for a grating spectrometer is described. General aberration theory is given for a family of designs of similar form, showing close similarities with the theory for conventional concentric imagers used in microlithography. Control of stray radiation in the concentric grating spectrometer is discussed.

CompAQS (Phase1 & 2) to CityScan

- CompAQS demonstrator 2007-9
- CityScan 2011

Phase 2 Completion

Atmos. Meas. Tech., 2, 789–800, 2009 www.atmos-meas-tech.net/2/789/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

C. Whyte¹, R. J. Leigh¹, D. Lobb², T. Williams², J. J. Remedios¹, M. Cutter², and P. S. Monks³

Fig. 9. A 3-D representation of the spatially resolved 404.66 nm mercury emission.

Fig. 10. A measurement of the "smile" in the CompAQS spectrometer system. The overall slope of the plot is due to a minor rotation of the CCD detector with respect to the focal plane. Sub-pixel values were obtained using a combined smoothing/spline interpolation routine. Features around column 620 and 710 result from artefacts on the CCD surface, and not deviation of the image.

- Incorporating the CompAQS spectrometer.
- Provides a weatherproof, thermally controlled housing which rotates in a full 360° every 6 minutes.

- The CompAQS spectrometer provides a 95° FOV which, in combination with the rotation provided by CityScan, gives a full hemispherical imager.
- Intersecting FOVs of multiple instruments offer the potential of gas tomography on a city-wide scale.

CityScan results

Bologna – June 2012

See: Rosie Graves, CEOI Session, Today, 16:15 Posters by Roland Leigh and Rosie Graves.

Try out our VR headset during the poster session

Tropospheric NO₂ SCD (QDOAS, Pacific Earthshine ref.)

Mission development

Use of an earthshine reference spectrum for NO₂ from space.

University c

Tropospheric NO₂ SCD Error (QDOAS, Pocific Earthshine ref.)

з

Tropospheric ND2 SCD Error (x 10" molcm")

17

Tropospheric NO, SCD (DOMINO)

See: Poster by Jasdeep Anand

The Ultra-Compact Air quality Mapper (UCAM)

A CEOI seedcorn study between the University of Leicester and SSTL

Shoe-boxed size CompAQS imaging spectrometer

UCAM pushbroom or full imaging NO₂ mapper

- Filter (discrete wavelength)
 retrieval using a neural network
- Real-time retrieval
- 10% of the volume
 - 10% of the mass
 - <10% of the data volume</p>
- See: Poster by James Lawrence

Applications

iTRAQ – An integrated traffic and air quality management tool.

Earth Observation Data

Conclusions

- Imaging NO₂ works well using CompAQS
- CityScan is proving to be a useful demonstration platform for CompAQS while opening a new area of 3D gas field analysis over urban environments.
- UCAM may reduce scales further.
- Mission-enabling developments are underway, including removal of solar reference, and development of smaller, lighter, low-data concepts.
- Applications such as iTRAQ will continue to be developed which make use of remotely-sensed NO₂ data for urban management systems.

Acknowledgements

- Funding Bodies
 - NERC, CEOI, NCEO, Environment Agency, SSTL, EMDA.
- Air Quality Group Leicester
 - Paul Monks
 - Rosemarie Graves
 - James Lawrence
 - Jasdeep Anand
 - Chris Whyte
- Surrey Satellite Technology Ltd
 - Mike Cutter
 - Dan Lobb
 - Mark Chang

To find out more Go to our website: www.leos.le.ac.uk/AQ

Follow us on Twitter: @AirQualityULeic

Email me: R.J.Leigh@leicester.ac.uk